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Abstract. The one-dimensional repulsive Hubbard model with infinitely strong interactions
is studied under the open boundary condition. The ground-state wave function of the present
model is derived based on the Bethesatzmethod. Using the wave functions thus obtained,
the Friedel oscillations in the Hubbard open chain are discussed.

1. Introduction

Recently, effects of nonmagnetic impurities in low-dimensional quantum systems have
attracted much attention, see e.g. [1]. In a one-dimensional magnet, such as the Heisenberg
chain, a nonmagnetic impurity cuts the magnetic chain. Therefore, in such purely one-
dimensional systems, we may often recognize the effects of nonmagnetic impurities as those
of boundaries. In general, the presence of an impurity or a boundary in uniform systems
yields oscillations in densities, which are called the Friedel oscillations. Using numerical
methods, the Friedel oscillations have been studied in some one-dimensional models, e.g.
the spinless fermion model [2], the Kondo lattice model [3], the Hubbard model [4] etc.
The asymptotic behaviour of the oscillations has been also discussed using the bosonization
technique [5, 6], and the Bettansatzmethod [7, 4], based on the boundary conformal field
theory. However, few results on the Friedel oscillations have been directly derived from
the wave function, although the Bettamsatzwave functions were obtained for several
one-dimensional quantum systems with boundaries, e.g. the Heisenberg model [8-10], the
Hubbard model [11-14] and so on.

In the present paper, we study the wave function in the lar¢jmit of the Hubbard
model with boundaries based on the Be#msatzmethod. Using the wave function, we
discuss the Friedel oscillations of the Hubbard open chain in the laigi.

In our discussions, we describe the Hubbard open chain by the following Hamiltonian,

L-1
H==3 ) (€0 +¢]ayC0)
j=lo==%
L
+4u Y “njnj_ — pinie — pinis — pRng — pRng_ (1.1)
=1

where p.. (or pR) denotes the magnitude of the boundary field for the electron with spin

+ on the left-end (or right-end) site. Here, the symbgl (or c;(,) denotes the annihilation
(or the creation) operator of an electron with spinat site j, and nj, stands for the
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number operator of the electron. The symliotlenotes the number of sites. We consider
the situation wherg N — M) electrons have up spins ard electrons have down spins
(L>N>M).

At first (in section 2), we take the limi# — +oo in the Betheansatzwave function
of the present model with free boundaries. Consequently, we observe that the ground-state
wave function takes a simple form in this limit, owing to a decoupling of charge and spin
degrees of freedom. Namely, in the langdimit the charge sector is described as the wave
function of the spinless fermion model with boundaries, while the spin sector is equivalent to
the antiferromagnetic Heisenberg open chain. Under the periodic boundary condition, such
a strong coupling limit was discussed by Ogata and Shiba [15] using the Lieb—Wu solution
[16]. For recent investigations based on their analysis [15], see e.g. [17] and references
cited therein.

Next, in section 3, we discuss the largdimit of the Hubbard chain with boundary
fields. Within an assumption, we also obtain a decoupling of charge and spin sectors for
finite boundary fields.

In section 4, we discuss the Friedel oscillations in the lardamit of the Hubbard
open chain. For this purpose, we calculate the electron density and the magnetization
as a functions of coordinates, using the factorized form of the wave function obtained in
section 2.

In section 5, we summarize our results obtained with our discussions.

2. Betheansatzwave function in the strong coupling limit of the Hubbard open chain

In the present section, we derive the ground-state wave function of the Hubbard open chain
with infinitely strong repulsive interactions. We mainly discuss the free boundary case in
this section. Effects of the boundary fields are studied in the next section.

At first, as preliminaries, we have to recapitulate the Bedhsatz analysis for an
arbitrary u [11-14]. (See also [18].) For more detailed derivations of the Bettsatz
equations, refer to the work by Shiroishi and Wadati [13]. In the present paper we use
different notations from theirs [13] so that we can easily take the lartjeit.

We describe the amplitude in the wave function of the Hamiltonian (1.1) by the symbol

Yo,...on(*1, ..., xy). Namely, the state vectdty) takes the following form,
W)= Y Yooy (1. .. XN)IX101, ... xyOY) (2.1)
{(xj,9)}
with |x104, ..., xyon) = erm . cIN(,N|O), where we have no electrons in the vacu|dn
Under the extended Bettansatz we describe the wave function by
N
Yor,on (X1, oo, XN) = ZAUQI ..... oon (KP1,s ~,kPN)eXp<i kPjXQj> (2.2)
P j=1

in the region 1< xp1 < - -+ < xgn < L, whereQ means a permutation o¥ coordinates.
The summatiord_, in (2.2) runs over all permutations and negationgiaf . . ., ky). We
substituteys, equation (2.2), into the eigenvalue equatibfyy) = E|v) to obtain the
following relationships:

Acor,.oon kPt oo kpnyr = jokpn =1, ... kpn)
(sink; — sink;) P41 — 12u

= (sink, — sink;) + i2u oot

=, ken) (2.3)

ooN (kPla ey kPn = i7 kPn+1
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1 — p(I;Q]_ e‘HkPl

Aoy, (=kp1,...) = =
0o1

A(TQl,...(kPl’ .. ‘) (24)

) 1-— pR g iken
_ _ _d2(L+Dkpy ooN
A---’”QN(' - —kpy) = —€ 1- pEQN gtikey
where P, ;1 is a permutation operator for the interchange betw@enand Q(n + 1). We
remark thatpy , takespy for g1 = +. Similarly, p} = takesp& for ooy = £. The
energy eigenvalu& is given by

A ooy (s kpn) (2.5)

N
E =-2)"cosk. (2.6)
j=1
We can derive all the coefficienfs\,,,....ooy (kp1, .. .. kpn)}p from Ag,, ooy ke, .oy kn)

with Re(k;) > 0, using the above relationships. The coefficiépy, . o,, (k1. ..., ky) takes
the form:

Ang """" oon (k]_, ey kN) =&p X ¢ (27)
where the symbot, denotes the sign of the permutatigh and¢ is a component of the
vector ¢ given by the eigenvalue equation:

Ty = ¢ (2.8)
T, =8 j-1(kj, kj—1) ... S 1(k;, k1)s(k;; P(I;j)Sl,j(kl, —ki)...Sj_1,j(kj—1, —k;)

X Sj41,j ki1, =kj) - Snj (ks —kj)s (kjs p3)

xS;n(kj k) ... Sj 1k, kjpr) €2ETDR (2.9)
sink; — Sinkj + |2MPU

sink; — sink; + i2u
Then the eigenvectop has yC, components, each of which is characterized by spin
coordinates, i.e. the locations & down spins{ysz} (8 = 1,..., M). In equation (2.10),
P;; stands for the permutation operator which acts on the spin coordinates.

Indeed, we can diagonalizg for the four cases in table 1 [13,14] by taking the

following form of ¢:

O(1, - YM) = ZB()»PL s Apym)
P

1- Po; e_ikj

Sj!j(ki,kj) = (210)

s(kj; po,) = 1= p, o

M y,g—l . .
. . sink; — Apg +iu
X (sinky + Apg — iu) —_/ - ] (2.12)
,!:[1[ p jl:Z[L Slnijrl—)\p/g —lu
with 1< y1 < -+ < yy < N. The summatior)_, in (2.11) runs over all permutations and

negations of(1q, ..., Ay). Except for a constant factor, the coefficieBrp1, ..., Apy)
can take the following form

Apg — SINk; + it Apy + SiNk; + iu)l/z}

M N
B(Ap1, ..., A =¢ B - - - -
(p1 Pat) PLII[ ( P“)jzl(kpa—3|nkj—|u Apo + SiNk; — iu

<[] Opo—rpp—i20)(hpa + App — i2u) (2.12)
I<a<BsM
with
lﬁ[Aa — sink; + iu Ay + SiNk; +iu Y0u) ﬁ Ao — hp +i2u hg + Ap +12u
Ao — SiNk; — it Ao + SiNk; — iu AL Aa—Ag—i2u hg 4+ Apg —i2u

(2.13)

i1
/ (B#a)
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for a=1,..., M, wheregp is a sign factor which changes the sign at each of the
permutations and negations. In the above equations, we have used the syimdods
Y defined by

1 for cases A and C iGpt=p)+u) +r
Boy={ . . N p) = —S—
n~2(x; p7) for cases B and D IG(p™" —p)+u)—
(2.14)
1 for case A » pHn(x; pR) for case B
YO = : n; po)n(a; po) (2.15)
n(x; p-) for case C n(x; pR) for case D.

We can also obtain the eigenvalue Bf The eigenvalue equation (2.8) means that the
eigenvalue is equal to unity, so that we have

sink; — Ag 4 iu sink; + Ag +iu

M
el2(L+1)k,z(k]) — 1_[

- — — - 2.16
pi SiNkj — Ap —lu Sink; + Ag — iu (2.16)
for j=1,..., N, where
1— peflk
Z(kj) = ¢(kjs pOChys P ks p) = 1o (2.17)

Then, we have two kinds of condition, equations (2.16) and (2.13) among the nughfers
(j=1,....,N)and {A,} (¢ = 1,..., M), which are the Bethansatz equations of the
present model (1.1).

Now, we take the limitu — oo and derive the ground-state wave function. In the
remaining part of the present section, we discuss the free boundary cagé @ep? = 0),
for simplicity. Namely, we haveZ(k;) = 1, Y(1,) = 1 andB(k,) = 1. The cases with
finite boundary fields are treated in the next section.

We introduce the new rapiditiga\,} by A, = A,/(2u), to scale{i,} by u. We assume
that each of the rapiditie;} (j = 1,..., N) and{A.} (o« = 1,..., M) corresponding to
the ground state is of ordef for u ~ oo.

Under this assumption, at first, we consider the strong coupling limit of the wave
function. We remark that the matrix connecting two coefficients in equation (2.3) goes to
—1 in this limit. Moreover, we combine equations (2.4), (2.5), (2.7) and (2.9) to arrive at
a factorized form of the wave function;

1
¥ = Ye(xg1, ..., Xon) X @s(¥1, ..., Yu) + O(;) (2.18)

N
I//C()CQ]_,...,XQN) =¢£&g Zap exp<ikaijj) (219)

j_

A «— 3 y017%
bs(V1, - s i) = pr ]_[ (AP — 2) (2.20)
Pa 2

except for a constant factor. Here, the summations in equations (2.19) and (2.20) run
over all permutations and negations(ity, ..., ky) and (Ay, ..., Ay), respectively. The
coefficientsap andbp take the following forms:

Apo +5\V . .
ap = ¢€p bp —8Pl_[ < 2 > X l_[ (Ape — Apg —1)(Apo + Apg — 1)
5

Apy — 3 1<a<B<M

(2.21)
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where each symbalp, denotes the sign factor which changes the sign at each mutation of
P. We remark that we can rewrit@; as

WC(XQ]_, ceey XQN) = (Zi)NEQ dei(sink,-ij). (222)
Next, we take the large-limit in the Betheansatzequations (2.16) and (2.13) to have
i\ 2N M ; :
1 — g2+ Aat 3\ _ [[2e—fotiBat Ayt ] (2.23)
Ay —1 b3 Ao —Ap—i Ay +Ap—i

(B#a)

Taking the logarithm of each equation, we can obtain the following forms
2rl; = 2(L + 1)k; (2.24)
M
27y, = (2N + 1)O(2A,) — Z{G(Aa — Ap) +0(Ag + Ap)) (2.25)
B=1

with 6(x) = 2tarr* x, where{/;} and{J,} take integer values. The ground state corresponds
to

{Ij}z{l’za-”vN_l’N} {Ja}={1725"'7M_1’M}' (226)
Using the rapidities thus obtained, the energy eigenvalue (2.6) can be described as

N 2 N M
E=-2) cosk; + ———— ) sirfk;
J,; it u(L +1) ; / Z

a=1

_1 1
2

A4 1 +0 (ﬁ) . (2.27)
aTZ

Then, we find that). takes the form of the wave function for the spinless fermion model
with boundaries and, on the other hard,takes the form of that for the antiferromagnetic
Heisenberg model with boundaries. Refer to [8-10, 18].

3. Effects of boundary fields

In the present section, we derive the ground-state wave function of the Hubbard open chain
with boundary fields. Instead of taking the same strategies as those in the previous section,
we study the large- limit by expanding the matri¥; (2.9).

In our discussions, we recognize that boundary chemical potentials are of :fyder
while we parametrize boundary magnetic fieldsphs= ¢-/(2u) and pR = ¢R/(2u) with
g"R ~ Ow®. See table 1. For these boundary fields, we assume{thaand {sink;}
(j=1,...,N) are of order® in the ground state.

If we have some complex ski of orderu! in the ground state, the energy (2.6) of
the state can be of order. This suggests that, in such a state, there exist electron pairs
occupying the same sites. Therefore, our assumption may physically mean that the ground
state of the present model, equation (1.1)uat oo is given as a superposition of only
the states in which all the electrons occupy different sites and have an energy of order
u®. (Of course, we expect that the ground state contains the doubly occupied states as the
higher-order contributions afi~* for u — 0o.) The works by Beirftig and Frahm [20]
and Deguchkgt al [21] support our assumption.

Under the above assumption, the maffixequation (2.10), can be expanded as follows,

sink; — sink; 1
Sijki k) = Pyj + —— —— (1= P +0 (ﬁ) . (3.1)
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Table 1. The Betheansatzequations of the Hubbard model (1.1) have been derived for the four
kinds of boundary field [13, 14] shown in the second column. We call the boundary chemical
potential ‘type-a boundary field’, and call the boundary magnetic field ‘type-b boundary field'.
In taking the larga: limit, we take the parametrization listed in the third column.

Cases Boundary fields Far— oo
Case A pEr =pt =pt pt ~ 0%
(type aa) pR=pR=pR  pR~0wu?
Case B p':r =—pt=pt pt=4t/@u) ~0w
(type bb) pf=—pR=pR  pR=qR/@u0)~0u™
Case C pi =—pt=pt pt=qg/u) ~0wh
(type ba) pR=pR=pR  pR~0wu?
Case D ph=pt=p- pt ~ 0@®
(type ab) pR=-pR=pR  pR=4R/@u) ~Ow=1)

Using this form, we arrive at the following results:

- 2isink; 1
T; = 2Dk Z (k) {I - ! Hs} + o<—2> (3.2)
u u
with
1— L e—ikj 1— R e—ikj
P = P — for case A 1 for case B
1 _ pL e+|k, 1 _ pR e+|kj
Z(kj) = I o (3.3)
l1ope C 1-pe D
m or case m or case

where Z denotes the identity operator anHs stands for the Hamiltonian of the
antiferromagnetic Heisenberg open chain defined by

L R
HO for case A HO — Loz T 5 for case B
2. = 2 2 (3.4)
s= qt gR :
HO — o1 for case C HO — ~-oj for case D
0 N-1 1 N-1 1
j=1 Jj=1

As we have discussed in the previous section, we have to diagorglizee (2.8). If
we neglect the terms of order?, we can take the eigenfunction of the Heisenberg model
with boundary fields as that of the matrix (3.2). Then, the eigenvalug of the matrix7;
is given by

) = G2k z(kj){z _ 2sink; ES({Aa})} + o(%) (3.6)
u u
with
¢ 4

EQ({1,)) for case A EQ (1)) — 55 for case B
Eo((ha)) = ) 3 (3.7)

EQ ) — % for case C EQ ) — % for case D

M1
EQ () =) 5 (38)

AZ+3

a=1
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Here,{A,} (@ = 1, ..., M) satisfy the Beth@nsatzequation of the Heisenberg open chain
with boundary fields [9, 10], namely
Ag + 3\ M Ny —Ag+iAg+Ap+i
( ?) =Y [] P E (3.9)
Aat_i -1 Aa—Aﬂ—lAa—i-Aﬂ—l

(B#@)
with
1 for case A
WE+D+ AR+ D+ A,
5GE+D —Aa 5(r + 1) — Ag
V(he) =1 3(F+ D+ Aq (3.10)
—1—— forcase C

3(E+D — Ay
FE+D+A,
Wk +D— A,
The eigenvalue equation (2.8) means the conditjea 1 so that we have

1= 2Lk Z (k) (3.11)

neglecting higher order terms af . Using the parameterg;} (j = 1,..., N), {As}
(¢ =1,..., M) determined by equations (3.11) and (3.9) we describe the energy eigenvalue
as follows,

for case B

for case D.

N N
E= —ZX;coskj + %;siﬂj +o<u—12). (3.12)
j= j=

By minimizing E, we can obtain the ground-state rapiditi¢és and{i,}. Here, we have to
remember thai is an arbitrary large number. Therefore, we can obt&jih by minimizing
-2 Z;V cosk; while, independently of this procedure, we can deternfiing by minimizing
E..

We find that the wave function takes the same form as that in the free-boundary case,
i.e. (2.18) with (2.19), (2.20). However, the definitions of the coefficieptandbp, have
to be changed as follows:

N
ap =ep | [[Akp;) e E+50] (3.13)
j=1
M APa + Y
mcwpﬂ[&Am(X—t%)}x [T (Are—Aps—D(Apat Aps—i) (3.14)
a=1 Pa ™ 3 1<a<B<M
with
1— pR e+ik,‘ %
A(k]) = <m) B(AQ) = 1 fOI’ cases A and C (315)

3R +D - Ag\
Akj) =1 B(Ay) = <ql—) for cases Band D (3.16)

' 3R+ D+ Aa

Similarly to the free boundary case, the wave function is given as a product of two
functions. One of them is the wave function of the spinless fermion model with boundary
fields and the other is that of the antiferromagnetic Heisenberg model with boundary fields.
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Table 2. The wave function in the large-imit of the Hubbard open chain with boundary fields
realizes a decoupling of charge and spin degrees of freedom. Namely, in this limit, the charge
sector is described as the wave function of the spinless fermion model (SLF) with boundary
fields, while the spin sector is equivalent to the antiferromagnetic Heisenberg model (AHM)
with boundary fields. The boundary fields in the resulting models are listed.

Boundary fields Boundary fields

of SLF model of AFH model
Cases Left Right Left Right
Case A pt PR 0 (free) O (free)
Case B 0 (free) 0 (free) ¢" gR
Case C 0 (free) pR q" 0 (free)
CaseD pt 0 (free) O (free) 4R

See [8-10, 19]. The boundary fields in the resulting models are summarized in table 2. We
remark that we can also derive the results obtained in this section by the method of the
previous section.

4. Friedel oscillations of the Hubbard open chain in the strong coupling limit

In the present section, we study the Friedel oscillations of the Hubbard open chain in the
strong coupling limit. Using the wave function obtained by our discussions, we calculate
the ground-state averages of the electron nuntpgrand of the magnetizatio(s;), where
nj=njy+n;—andS; = (nj4 —n;_)/2.

The averages are given by the following forms:

N
_ Zl<x1<m<x,\,<1,(zi:1 3x,,j) x Welxy, ..., xn)

) = Dt coeny<r WelX1, ooy XN) (4-1)
s Y tcrrecryer (Cima midy, ;) x Welxa, ..., xy) “2)
/ D tcnycmeny<r Welxt, -, xn)
o= b~ Zinecouen Cima ) X Won, - yan) “3)
2 Dtcyiemzyyen WsV, oo yu)
with
We(x1, ..., xn) = Yi (X1, ..., xn) X Yelxe, ..., xN) (4.4)
W1, - oo ym) = @5 (V1s -0 Yur) X sV, - -, Ym)- (4.5)

Here,y. andgs have been defined in sections 2 and 3. We remark that we have the explicit
form of (n;) as follows,

(nj) (4.6)

2

For simplicity, we discuss only the free boundary case. Moreover, we focus on the
states (1) near half-filingN =L —1 and M = (L/2) — 1) and (2) near quarter-filling
(N=(L/2)—1and M = (L/4) —1). At half-filling (N =L and M = L/2), we have
(nj) = 1 and(S;) = 0O for any j, because of the particle-hole symmetry and the spin
up—down symmetry. At quarter-fillingN = L/2 andM = L/4) with u — oo, the
particle—hole symmetry of the spinless fermion model and the up—down symmetry of the

_ 1 {N+ }(1_ sin(n]:/L + (2N +1)>}.
L+1 sin(zj/L + 1)
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Heisenberg model yield a uniform state with) = 1/2 and(S;’) = 0 for any j. However,
in each case(n;) and(S]‘?) may oscillate by introducing one holon and one spinon due to
the existence of the boundaries.

In general, the presence of impurities or boundaries in a one-dimensional system leads
to Friedel oscillations in densities, which have the general form [4, 22, 23]

Cco92kex +¢) , COS4kpx + ¢')
. + cCxX—m8

xv xV'

Sp(x) ~ cx (4.7)

where kg denotes the Fermi wave number of the free electron. For example, we have
ke = (/2) (or kg = (7r/4)) for the half filling (or the quarter-filling).

1.2 L A T T T L B T
1 e e o S SADUDPPIINS S o o S i
0.8
@ 06 | —e—¢lectron number |-
pe , —®— magnetization
0 0.4
o [ 1
O [ ]
= 0.2 | ,,
[ LERERVERVAR 2
0.2 F
_0'4 il I i L I 5 " 1 L 1 L . L . 1 : ] L i 1 1 1
0 5 10 15 20 25

site

Figure 1. Oscillations of densitieg;) and (S/> on the 26-site Hubbard open chain near half-
filling. We have taken the parametdts= 26, N = 25 andM = 12. In evaluating the densities,

we have numerically diagonalized the antiferromagnetic Heisenberg open chain with 25 sites to
derive the ground-state eigenfunction with tafal= % Curves are guides to the eye.

In figures 1 and 2, we show the result obtained by our scheme. We have numerically
evaluatedn;) and(S;) using equations (4.1) and (4.2). We have no oscillations in electron
densities or oscillations in magnetizations with the period of 2 sites, near half-filling. On
the other hand, near quarter-filling, electron densities oscillate with the period of 2 sites and
magnetizations oscillate with the period of 4 sites. Although our results may include many
finite size effects, we can really obtain the oscillations expected from the general form (4.7).

In this calculation, we have derivef} by numerical diagonalization of the Heisenberg
model, instead of using the Betlamsatzwave-function form. The Bethansatzform of
¢s is given as a sum ao¥f terms, each of which we have to evaluate after solving the Bethe
ansatzequation. As the system size becomes larger, it rapidly gets difficult to calculate by
using the Bethansatzform. In order to evaluate the wave functiggwith higher accuracy
and within shorter computing time, we had better diagonalize the Heisenberg Hamiltonian
numerically. The similar strategy has been taken in [15].
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06 L R A B | . T L I T
0'5 I _
0.4
@ 0.8 |
uE| r —*—electron number |
‘B 0.2 : . 1
a oy —®-magnetization ;
] [
=] 0.1 ]
FAVAWaWaWal
-0.1 | .
_0.2'>‘|, TR N . PSP S R B
0 4 8 12 16 20 24 28 32
site
Figure 2. Oscillations of densitieg:;) and(Sj?) on the 32-site Hubbard open chain near quarter-
filling. We have taken the parametets= 32, N = 15 andM = 7. In evaluating the densities,
we have numerically diagonalized the antiferromagnetic Heisenberg open chain with 15 sites to
derive the ground-state eigenfunction with tofal= % Curves are guides to the eye.
5. Summary

In the present paper, we have studied the strong coupling limit of the Hubbard open chain
(1.1) based on the Bethansatzmethod.

In section 2, we have taken the strong coupling limit in the Bethsatzwave function
of the present model (1.1) with free boundaries, so that we have obtained the product form
of two functions, i.ey. x ¢s, as the ground-state wave function. Hefg,denotes the wave
function of the spinless fermion model agd is that of the antiferromagnetic Heisenberg
model. The boundary conditions of both resulting models are open.

Moreover, we have also derived the langdimit wave function of the Hubbard open
chain (1.1) with finite boundary fields, in section 3. Under an assumption, we have arrived at
a similar form to the free boundary case. In this case, the resulting models, i.e. the spinless
fermion model and the antiferromagnetic Heisenberg model, have also finite boundary fields.

In section 4, we have calculated the local electron numbpgj and the local
magnetization(S;) in the Hubbard open chain with free boundaries, using the factorized
form of the wave function obtained in section 2. Consequently we have obtained the Friedel
oscillations in both quantities. In our results, the period of the oscillatior{s;in(or (Sj))
reflects the Fermi wave number in the charge (or the spin) sector, as is expected.

We can use the wave functions obtained in the present paper to evaluate various
guantities in the Hubbard open chain with— co. We will report such results derived
from the wave function elsewhere in the near future.
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